Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
COVID-19 in Alzheimer's Disease and Dementia ; : 109-122, 2023.
Article in English | Scopus | ID: covidwho-20236197

ABSTRACT

Currently, there are no reliable biomarkers for identifying COVID-19 patients and no definite therapeutics to control this deadly disease. MicroRNAs (miRNA) have been explored in several human diseases for their potential role as biomarkers and their therapeutic potential. However, there is very little information available about the roles of miRNAs in COVID-19 infection. This chapter outlines the recent updates and developments of miRNAs in COVID-19 such as miRNAs as potential biomarkers for COVID-19, the molecular basis of miRNAs in COVID-19 infection, and the use of miRNAs as therapeutics targets for COVID-19. While a few potential miRNAs have been researched for the aforementioned reasons, more research is needed to determine the roles of individual miRNAs in COVID-19 infection. © 2023 Elsevier Inc. All rights reserved.

2.
Neurologia (Engl Ed) ; 2021 Jul 16.
Article in Spanish | MEDLINE | ID: covidwho-20237758

ABSTRACT

INTRODUCTION: The expression of specific miRNAs and their mRNA targets are changed in infectious disease. The aim of this study was to analyze the expression of pro-neuroinflammatory miRNAs, anti- neuroinflammatory miRNAs, and their mRNA targets in the serum of COVID-19 patients with different grades. METHODS: COVID-19 patients with different grades were enrolled in this study and the expression of pro-neuroinflammatory miRNAs, anti-neuroinflammatory miRNAs, and their target mRNAs was analyzed by q-PCR. RESULTS: The relative expression of anti- neuroinflammatory miRNAs (mir-21, mir-124, and mir-146a) was decreased and the relative expression of their target mRNAs (IL-12p53, Stat3, and TRAF6) was increased. Also, the relative expression of pro-neuroinflammatory miRNAs (mir-326, mir-155, and mir-27b) was increased and the relative expression of their target mRNA (PPARS, SOCS1, and CEBPA) was decreased in COVID-19 patients with increase of disease grade. A negative significant correlation was seen between mir-21 and IL-12p53 mRNA, mir-124 and Stat3 mRNA, mir-146a and TRAF6 mRNA, mir-27b and PPARS mRNA, mir-155 and SOCS1 mRNA, and between mir-326 and CEBPA mRNA in COVID-19 patients (P<0.05). CONCLUSIONS: This study showed that the relative expression of anti- neuroinflammatory miRNAs was decreased and the relative expression of their targeted mRNAs was increased in COVID-19 patients from asymptomatic to critical illness. Also, this study showed that the relative expression of pro-neuroinflammatory miRNAs was increased and the relative expression of their targeted mRNA was decreased in COVID-19 patients from asymptomatic to critical illness.

3.
Math Biosci Eng ; 20(6): 10659-10674, 2023 Apr 13.
Article in English | MEDLINE | ID: covidwho-2324457

ABSTRACT

To comprehend the etiology and pathogenesis of many illnesses, it is essential to identify disease-associated microRNAs (miRNAs). However, there are a number of challenges with current computational approaches, such as the lack of "negative samples", that is, confirmed irrelevant miRNA-disease pairs, and the poor performance in terms of predicting miRNAs related with "isolated diseases", i.e. illnesses with no known associated miRNAs, which presents the need for novel computational methods. In this study, for the purpose of predicting the connection between disease and miRNA, an inductive matrix completion model was designed, referred to as IMC-MDA. In the model of IMC-MDA, for each miRNA-disease pair, the predicted marks are calculated by combining the known miRNA-disease connection with the integrated disease similarities and miRNA similarities. Based on LOOCV, IMC-MDA had an AUC of 0.8034, which shows better performance than previous methods. Furthermore, experiments have validated the prediction of disease-related miRNAs for three major human diseases: colon cancer, kidney cancer, and lung cancer.


Subject(s)
Colonic Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Genetic Predisposition to Disease , Algorithms , Computational Biology/methods , Colonic Neoplasms/genetics
4.
Rev Med Virol ; 33(4): e2449, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2312244

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for coronavirus disease of 2019 (COVID-19) that infected more than 760 million people worldwide with over 6.8 million deaths to date. COVID-19 is one of the most challenging diseases of our times due to the nature of its spread, its effect on multiple organs, and an inability to predict disease prognosis, ranging from being completely asymptomatic to death. Upon infection, SARS-CoV-2 alters the host immune response by changing host-transcriptional machinery. MicroRNAs (miRNAs) are regarded as post-transcriptional regulators of gene expression that can be perturbed by invading viruses. Several in vitro and in vivo studies have reported such dysregulation of host miRNA expression upon SARS-CoV-2 infection. Some of this could occur as an anti-viral response of the host to the viral infection. Viruses themselves can counteract that response by mounting their own pro-viral response that facilitates virus infection, an aspect which may cause pathogenesis. Thus, miRNAs could serve as possible disease biomarkers in infected people. In the current review, we have summarised and analysed the existing data about miRNA dysregulation in patients infected with SARS-CoV-2 to determine their concordance between studies, and identified those that could serve as potential biomarkers during infection, disease progression, and death, even in people with other co-morbidities. Having such biomarkers can be vital in not only predicting COVID-19 prognosis, but also the development of novel miRNA-based anti-virals and therapeutics which can become invaluable in case of the emergence of new viral variants with pandemic potential in the future.


Subject(s)
COVID-19 , MicroRNAs , Virus Diseases , Viruses , Humans , MicroRNAs/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viruses/genetics , Biomarkers
5.
Omics Approaches and Technologies in COVID-19 ; : 145-160, 2022.
Article in English | Scopus | ID: covidwho-2297600

ABSTRACT

Coronavirus disease 2019 or COVID-19 has surfaced as a global disaster eliciting severe respiratory illness, imputable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since its inception, scientists and researchers have urgently aligned their research for the identification of potential biomarkers for early detection and to develop novel therapeutics for the treatment of COVID-19 infection. MicroRNAs (miRNAs) are known to regulate critical cellular pathways in several human pathologies including viral infections and have surfaced as key modulators in mediating the SARS-CoV-2 pathogenesis as well. The virus-host interactions mediated through miRNAs have been of keen interest to researchers these days. Significant miRNAs have been reported, which might act as potential biomarkers and therapeutic targets. The differential expression of miRNAs in mild and severely affected patients has paved the way for drug development and therapies. The mechanism and understanding the emerging role of miRNA for the virus and infected host cell interplay will contribute to therapeutic prospects and mitigate the burden of such similar viral infections. © 2023 Elsevier Inc. All rights reserved.

6.
Noncoding RNA ; 9(2)2023 Apr 18.
Article in English | MEDLINE | ID: covidwho-2301483

ABSTRACT

(1) Background: MicroRNAs are involved in the expression of the gene encoding the chloride channel CFTR (Cystic Fibrosis Transmembrane Conductance Regulator); the objective of this short report is to study the effects of the treatment of bronchial epithelial Calu-3 cells with molecules mimicking the activity of pre-miR-145-5p, pre-miR-335-5p, and pre-miR-101-3p, and to discuss possible translational applications of these molecules in pre-clinical studies focusing on the development of protocols of possible interest in therapy; (2) Methods: CFTR mRNA was quantified by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR). The production of the CFTR protein was assessed by Western blotting; (3) Results: The treatment of Calu-3 cells with agomiR-145-5p caused the highest inhibition of CFTR mRNA accumulation and CFTR production; (4) Conclusions: The treatment of target cells with the agomiR pre-miR-145-5p should be considered when CFTR gene expression should be inhibited in pathological conditions, such as polycystic kidney disease (PKD), some types of cancer, cholera, and SARS-CoV-2 infection.

7.
J Taibah Univ Med Sci ; 18(5): 1030-1047, 2023 Oct.
Article in English | MEDLINE | ID: covidwho-2279245

ABSTRACT

The SARS-CoV-2 virus targets the antigen converting enzyme 2 (ACE2) receptor, thus resulting in elevated morbidity and an increased risk of severe and fatal COVID-19 infection in individuals with hypertension and diabetes mellitus. Objectives: This study aimed to identify the association between increased susceptibility and severity in order to evaluate their impact in hypertensive COVID-19 patients using in vitro and in silico models. Methods: We identified 80 miRNA binding sites on ACE2 (for different miRNAs) as well as various 30 SNPs in the miRNA binding sites of the 3' untranslated region (3' UTR) in the ACE2 gene using different online software and tools. From August 2020 to August 2021, a total of 200 nasopharyngeal/mouth swabs samples were collected from Multan, Pakistan. In order to quantify the cDNA of ACE2 and miR-3658 genes, we used Rotor Gene qRT-PCR on hypertensive patients with COVID-19 as well as healthy controls. Results: Interestingly, the binding site of miR-3658 corresponding to the 3' UTR of ACE2 featured three SNPs (rs1457913029, C>T; rs960535757, A>C, G; rs1423809569, C>T), and its genomic sequence featured a single SNP (rs1024225815, C>T) with the same nucleotide variation (rs1457913029, C>T) which potentially increases the severity of COVID-19. Similarly, three other SNPs (rs1557852115, C>G; rs770335293, A>G; rs1024225815, C>T) were also found on the first binding site positions of miR-3658. Our in vitro study found that ACE2 gene expression had an effect on miR-3658 in COVID-19 patients who also had hypertension. In both cases, our analysis demonstrated that the in silico model captured the same biological mechanisms as the in vitro system. Conclusion: The identified SNPs could represent potential informative signatures owing to their position in the splicing site of the ACE2 gene.

8.
Front Cell Infect Microbiol ; 12: 966870, 2022.
Article in English | MEDLINE | ID: covidwho-2276215

ABSTRACT

The recent pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 has resulted in enormous deaths around the world. Clues from genomic sequences of parent and their mutants can be obtained to understand the evolving pathogenesis of this virus. Apart from the viral proteins, virus-encoded microRNAs (miRNAs) have been shown to play a vital role in regulating viral pathogenesis. Thus we sought to investigate the miRNAs encoded by SARS-CoV-2, its mutants, and the host. Here, we present the results obtained using a dual approach i.e (i) identifying host-encoded miRNAs that might regulate viral pathogenesis and (ii) identifying viral-encoded miRNAs that might regulate host cell signaling pathways and aid in viral pathogenesis. Analysis utilizing the first approach resulted in the identification of ten host-encoded miRNAs that could target the SARS, SARS-CoV-2, and its mutants. Interestingly our analysis revealed that there is a significantly higher number of host miRNAs that could target the SARS-CoV-2 genome as compared to the SARS reference genome. Results from the second approach resulted in the identification of a set of virus-encoded miRNAs which might regulate host signaling pathways. Our analysis further identified a similar "GA" rich motif in the SARS-CoV-2 and its mutant genomes that was shown to play a vital role in lung pathogenesis during severe SARS infections. In summary, we have identified human and virus-encoded miRNAs that might regulate the pathogenesis of SARS coronaviruses and describe similar non-coding RNA sequences in SARS-CoV-2 that were shown to regulate SARS-induced lung pathology in mice.


Subject(s)
Genome, Viral , MicroRNAs , SARS-CoV-2 , Animals , Humans , Mice , COVID-19 , MicroRNAs/genetics , Pandemics , SARS-CoV-2/genetics , Viral Proteins/genetics
9.
Clin Chem Lab Med ; 61(8): 1518-1524, 2023 Jul 26.
Article in English | MEDLINE | ID: covidwho-2272224

ABSTRACT

OBJECTIVES: Nearly three years into the pandemic, SARS-CoV-2 infections are occurring in vaccinated and naturally infected populations. While humoral and cellular responses in COVID-19 are being characterized, novel immune biomarkers also being identified. Recently, an increase in angiotensin-converting enzyme 2 expressing (aka, ACE2 positive) circulating exosomes (ExoACE2) were identified in the plasma of COVID-19 patients (El-Shennawy et al.). In this pilot study, we describe a method to characterize the exosome-associated microRNA (exo-miRNA) signature in ACE2-positive and ACE2-negative exosomal populations (non-ExoACE2). METHODS: We performed a sorting protocol using the recombinant biotin-conjugated SARS CoV-2 spike protein containing the receptor binding domain (RBD) on plasma samples from six patients. Following purification, exo-miRNA were characterized for ACE2-positive and ACE2-negative exosome subpopulations by RT-PCR. RESULTS: We identified differential expression of several miRNA. Specifically let-7g-5p and hsa-miR-4454+miR-7975 were upregulated, while hsa-miR-208a-3p and has-miR-323-3p were downregulated in ExoACE2 vs. non-ExoACE2. CONCLUSIONS: The SARS CoV-2 spike-protein guided exosome isolation permits isolation of ExoACE2 exosomes. Such purification facilitates detailed characterization of potential biomarkers (e.g. exo-miRNA) for COVID-19 patients. This method could be used for future studies to further the understanding mechanisms of host response against SARS CoV-2.


Subject(s)
COVID-19 , Exosomes , MicroRNAs , Humans , COVID-19/diagnosis , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Exosomes/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Pilot Projects , Biomarkers
10.
Front Microbiol ; 14: 1066493, 2023.
Article in English | MEDLINE | ID: covidwho-2271980

ABSTRACT

Serine incorporator protein 5 (SERINC5) is a key innate immunity factor that operates in the cell to restrict the infectivity of certain viruses. Different viruses have developed strategies to antagonize SERINC5 function but, how SERINC5 is controlled during viral infection is poorly understood. Here, we report that SERINC5 levels are reduced in COVID-19 patients during the infection by SARS-CoV-2 and, since no viral protein capable of repressing the expression of SERINC5 has been identified, we hypothesized that SARS-CoV-2 non-coding small viral RNAs (svRNAs) could be responsible for this repression. Two newly identified svRNAs with predicted binding sites in the 3'-untranslated region (3'-UTR) of the SERINC5 gene were characterized and we found that the expression of both svRNAs during the infection was not dependent on the miRNA pathway proteins Dicer and Argonaute-2. By using svRNAs mimic oligonucleotides, we demonstrated that both viral svRNAs can bind the 3'UTR of SERINC5 mRNA, reducing SERINC5 expression in vitro. Moreover, we found that an anti-svRNA treatment to Vero E6 cells before SARS-CoV-2 infection recovered the levels of SERINC5 and reduced the levels of N and S viral proteins. Finally, we showed that SERINC5 positively controls the levels of Mitochondrial Antiviral Signalling (MAVS) protein in Vero E6. These results highlight the therapeutic potential of targeting svRNAs based on their action on key proteins of the innate immune response during SARS-CoV-2 viral infection.

11.
Diagnostics (Basel) ; 13(1)2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2240907

ABSTRACT

COVID-19 infection triggered a global public health crisis during the 2020-2022 period, and it is still evolving. This highly transmissible respiratory disease can cause mild symptoms up to severe pneumonia with potentially fatal respiratory failure. In this cross-sectional study, 41 PCR-positive patients for SARS-CoV-2 and 42 healthy controls were recruited during the first wave of the pandemic in Mexico. The plasmatic expression of five circulating miRNAs involved in inflammatory and pathological host immune responses was assessed using RT-qPCR (Reverse Transcription quantitative Polymerase Chain Reaction). Compared with controls, a significant upregulation of miR-146a, miR-155, and miR-221 was observed; miR-146a had a positive correlation with absolute neutrophil count and levels of brain natriuretic propeptide (proBNP), and miR-221 had a positive correlation with ferritin and a negative correlation with total cholesterol. We found here that CDKN1B gen is a shared target of miR-146a, miR-221-3p, and miR-155-5p, paving the way for therapeutic interventions in severe COVID-19 patients. The ROC curve built with adjusted variables (miR-146a, miR-221-3p, miR-155-5p, age, and male sex) to differentiate individuals with severe COVID-19 showed an AUC of 0.95. The dysregulation of circulating miRNAs provides new insights into the underlying immunological mechanisms, and their possible use as biomarkers to discriminate against patients with severe COVID-19. Functional analysis showed that most enriched pathways were significantly associated with processes related to cell proliferation and immune responses (innate and adaptive). Twelve of the predicted gene targets have been validated in plasma/serum, reflecting their potential use as predictive prognosis biomarkers.

12.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: covidwho-2235894

ABSTRACT

After the outbreak of the pandemic due to COVID-19 infection, several vaccines were developed on short timelines to counteract the public health crisis. To allow the administration of mRNA vaccines through a faster-paced approval process, the Emergency Use Authorization (EUA) was applied. The Ba.5 (omicron) variant of SARS-CoV-2 is the predominant one at this moment. Its highly mutable single-stranded RNA genome, along with its high transmissivity, generated concern about the effectiveness of vaccination. The interaction between the vaccine and the host cell is finely regulated by miRNA machinery, a complex network that oversees a wide range of biological processes. The dysregulation of miRNA machinery has been associated with the development of clinical complications during COVID-19 infection and, moreover, to several human pathologies, among which is cancer disease. Now that in some areas, four doses of mRNA vaccine have been administered, it is natural to wonder about its effectiveness and long-term safety.


Subject(s)
COVID-19 , MicroRNAs , Humans , MicroRNAs/genetics , RNA, Messenger/genetics , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Technology
13.
Cell Signal ; 101: 110496, 2023 01.
Article in English | MEDLINE | ID: covidwho-2235843

ABSTRACT

Nitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O2), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology. NO is a Janus-faced molecule shown to have both tumor promoting and tumoricidal effects, which depend on its concentration, duration of exposure, and location. A high concentration is shown to have cytotoxic effects by triggering apoptosis, and at a low concentration, NO promotes angiogenesis, metastasis, and tumor progression. Upregulated NO synthesis has been implicated as a causal factor in several pathophysiological conditions including cancer. This dichotomous effect makes it highly challenging to discover its true potential in cancer biology. Understanding the mechanisms by which NO acts in different cancers helps to develop NO based therapeutic strategies for cancer treatment. This review addresses the physiological role of this molecule, with a focus on its bimodal action in various types of cancers.


Subject(s)
Neoplasms , Nitric Oxide , Humans , Nitric Oxide/metabolism , Neoplasms/pathology , Signal Transduction , Apoptosis , Superoxides/metabolism
14.
Experimental Biomedical Research ; 6(1):57-76, 2023.
Article in English | ProQuest Central | ID: covidwho-2226644

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak which still continues to affect the general population, has mutated day by day and new variants have emerged. More than 40 variants, usually caused by mutations in the spike (S) protein, have been recorded. Observation of S protein mutations in the development of t herapeutic agents will increase success rates. As we identify the three-dimensional (3D) conformation of viruses, it is more and more possible to work on models for understanding molecular interactions. Development of agents for arrays and 3D sequencing of proteins paves the way for potential therapeutic studies against variants. MicroRNAs (miRNAs) seemingly act as a potentially important group of biomolecules in combating uncontrolled cytokine release. Besides antiviral response, miRNAs promise to be powerful therapeutic agents against infections. Studies have shown that miRNAs are able to inhibit the genome directly by miRNA-based treatments as they are sprecific to the SARS-CoV-2 genome. In order to expose this potential, in silico studies before continuing with lab studies are helpful. In our bioinformatics analysis, we proposed to compare the S protein similarities of Delta and Omicron, two of the most common variants, and to detect miRNAs targeting the S protein. The S proteins and coding sequences were compared between the two variants, and differences were determined. Within our analysis, 105 and 109 miRNAs for the Delta and Omicron variants, respectively, were detected.We believe that our study will be a potential guide for deciding on the miRNAs that may most likely have an effect on the management of the infection caused by both variants.

15.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2216337

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and poses significant complications for cardiovascular disease (CVD) patients. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and influence several physiological and pathological processes, including CVD. This critical review aims to expand upon the current literature concerning miRNA deregulation during the SARS-CoV-2 infection, focusing on cardio-specific miRNAs and their association with various CVDs, including cardiac remodeling, arrhythmias, and atherosclerosis after SARS-CoV-2 infection. Despite the scarcity of research in this area, our findings suggest that changes in the expression levels of particular COVID-19-related miRNAs, including miR-146a, miR-27/miR-27a-5p, miR-451, miR-486-5p, miR-21, miR-155, and miR-133a, may be linked to CVDs. While our analysis did not conclusively determine the impact of SARS-CoV-2 infection on the profile and/or expression levels of cardiac-specific miRNAs, we proposed a potential mechanism by which the miRNAs mentioned above may contribute to the development of these two pathologies. Further research on the relationship between SARS-CoV-2, CVDs, and microRNAs will significantly enhance our understanding of this connection and may lead to the use of these miRNAs as biomarkers or therapeutic targets for both pathologies.


Subject(s)
COVID-19 , Cardiovascular Diseases , Circulating MicroRNA , MicroRNAs , Humans , SARS-CoV-2/metabolism , Cardiovascular Diseases/genetics , COVID-19/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
16.
Beni Suef Univ J Basic Appl Sci ; 12(1): 3, 2023.
Article in English | MEDLINE | ID: covidwho-2196568

ABSTRACT

Background: Plant elements and extracts have been used for centuries to treat a wide range of diseases, from cancer to modern lifestyle ailments like viral infections. These plant-based miRNAs have the capacity to control physiological and pathological conditions in both humans and animals, and they might be helpful in the detection and treatment of a variety of diseases. The present study investigates the miRNA of the well-known spice Curcuma Longa and its prospective targets using a variety of bioinformatics techniques. Results: Using the integrative database of animal, plant, and viral microRNAs known as miRNEST 2.0, nine C. longa miRNAs were predicted. psRNA target service foretells the presence of 23 human target genes linked to a variety of disorders. By interacting with a variety of cellular and metabolic processes, miRNAs 167, 1525, and 756 have been found to be critical regulators of tumour microenvironment. SARS-cov2 and influenza A virus regulation have been connected to ZFP36L1 from miRNA 1525 and ETV5 from miRNA 756, respectively. Conclusions: The current cross-kingdom study offers fresh knowledge about how to increase the effectiveness of plant-based therapies for disease prevention and serves as a platform for in vitro and in vivo research development.

17.
Theranostics ; 13(1): 125-147, 2023.
Article in English | MEDLINE | ID: covidwho-2203054

ABSTRACT

Coronavirus disease 2019 (COVID-19), an infectious disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that has high incidence rates, spreads rapidly, and has caused more than 6.5 million deaths globally to date. Currently, several drugs have been used in the clinical treatment of COVID-19, including antivirals (e.g., molnupiravir, baricitinib, and remdesivir), monoclonal antibodies (e.g., etesevimab and tocilizumab), protease inhibitors (e.g., paxlovid), and glucocorticoids (e.g., dexamethasone). Increasing evidence suggests that circulating microRNAs (miRNAs) are important regulators of viral infection and antiviral immune responses, including the biological processes involved in regulating COVID-19 infection and subsequent complications. During viral infection, both viral genes and host cytokines regulate transcriptional and posttranscriptional steps affecting viral replication. Virus-encoded miRNAs are a component of the immune evasion repertoire and function by directly targeting immune functions. Moreover, several host circulating miRNAs can contribute to viral immune escape and play an antiviral role by not only promoting nonstructural protein (nsp) 10 expression in SARS coronavirus, but among others inhibiting NOD-like receptor pyrin domain-containing (NLRP) 3 and IL-1ß transcription. Consequently, understanding the expression and mechanism of action of circulating miRNAs during SARS-CoV-2 infection will provide unexpected insights into circulating miRNA-based studies. In this review, we examined the recent progress of circulating miRNAs in the regulation of severe inflammatory response, immune dysfunction, and thrombosis caused by SARS-CoV-2 infection, discussed the mechanisms of action, and highlighted the therapeutic challenges involving miRNA and future research directions in the treatment of COVID-19.


Subject(s)
COVID-19 , Circulating MicroRNA , MicroRNAs , Humans , Antiviral Agents/pharmacology , COVID-19/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , SARS-CoV-2
18.
OMICS ; 26(11): 608-621, 2022 11.
Article in English | MEDLINE | ID: covidwho-2087719

ABSTRACT

COVID-19 is a systemic disease affecting tissues and organs, including and beyond the lung. Apart from the current pandemic context, we also have vastly inadequate knowledge of consequences of repeated exposures to SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus causing COVID-19, in multiple organ systems and the whole organism scales when the disease evolves from a pandemic to an endemic state. This calls for a systems biology and systems medicine approach and unpacking the effects of COVID-19 in lung as well as other tissues. We report here original findings from transcriptomics analyses and differentially expressed genes (DEGs) in lung samples from 60 patients and 27 healthy controls, and in whole blood samples from 255 patients and 103 healthy individuals. A total of 11 datasets with RNA-seq transcriptomic data were obtained from the Gene Expression Omnibus and the European Nucleotide Archive. The identified DEGs were used to construct protein interaction and functional networks and to identify related pathways and miRNAs. We found 35 DEGs common between lung and the whole blood, and importantly, 2 novel genes, namely CYP1B1 and TNFAIP6, which have not been previously implicated with COVID-19. We also identified four novel miRNA potential regulators, hsa-mir-192-5p, hsa-mir-221-3p, hsa-mir-4756-3p, and hsa-mir-10a-5p, implicated in lung or other diseases induced by coronaviruses. In summary, these findings offer new molecular leads and insights to unpack COVID-19 systems biology in a whole organism context and might inform future antiviral drug, diagnostics, and vaccine discovery efforts.


Subject(s)
COVID-19 , MicroRNAs , Humans , Transcriptome/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Systems Biology , MicroRNAs/metabolism , Lung/metabolism , Computational Biology
19.
J Cell Mol Med ; 26(19): 4940-4948, 2022 10.
Article in English | MEDLINE | ID: covidwho-2019413

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the novel coronavirus responsible for worldwide coronavirus disease (COVID-19). We previously observed that Angiotensin-converting enzyme 2 (ACE2) and Dipeptidyl peptidase-4 (DPP4) are significantly overexpressed in naso-oropharyngeal swabs (NPS) of COVID-19 patients, suggesting their putative functional role in the disease progression. ACE2 and DPP4 overexpression in COVID-19 patients may be associated to epigenetic mechanism, such as miRNA differential expression. We investigated if hsa-let7b-5p, reported to target both ACE2 and DPP4 transcripts, could be involved in the regulation of these genes. We verified that the inhibition and overexpression of hsa-let7b-5p matched to a modulation of both ACE2 and DPP4 levels. Then, we observed a statistically significant downregulation (FC = -1.5; p < 0.05) of hsa-let7b-5p in the same COVID-19 and control samples of our previous study. This is the first study that shows hsa-let7b-5p low expression in naso-oropharyngeal swabs of COVID-19 patients and demonstrates a functional role of this miR in regulating ACE2 and DPP4 levels. These data suggest the involvement of hsa-let7b-5p in the regulation of genes necessary for SARS-CoV-2 infections and its putative role as a therapeutic target for COVID-19.


Subject(s)
COVID-19 , MicroRNAs , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , SARS-CoV-2/genetics
20.
J Cell Physiol ; 237(11): 4021-4036, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2013564

ABSTRACT

Extracellular vehicles (EVs) are nanoscale lipid bilayer vesicles that carry biologically active biomolecule cargos like proteins, lipids, and nucleic acids (DNA, RNA) outside of the cell. Blood (serum/plasma), urine, and bronchoalveolar lavage fluid are all examples of biofluids from which they may be collected. EVs play a vital role in intracellular communication. The molecular signature of EVs largely depends on the parental cell's status. EVs are classified into two groups, (1) exosomes (originated by endogenous route) and (2) microvesicles (originated from the plasma membrane, also known as ectosomes). The quantity and types of EV cargo vary during normal conditions compared to pathological conditions (chronic inflammatory lung diseases or lung cancer). Consequently, EVs contain novel biomarkers that differ based on the cell type of origin and during lung diseases. Small RNAs (e.g., microRNAs) are transported by EVs, which is one of the most rapidly evolving research areas in the field of EVs biology. EV-mediated cargos transport small RNAs that can result in reprograming the target/recipient cells. Multiple chronic inflammatory lung illnesses, such as chronic obstructive pulmonary disease, asthma, pulmonary hypertension, pulmonary fibrosis, cystic fibrosis, acute lung injury, and lung cancer, have been demonstrated to be regulated by EV. In this review, we will consolidate the current knowledge and literature on the novel role of EVs and their small RNAs concerning chronic lung diseases (CLDs). Additionally, we will also provide better insight into the clinical and translational impact of mesenchymal stem cells-derived EVs as novel therapeutic agents in treating CLDs.


Subject(s)
Exosomes , Extracellular Vesicles , Lung Diseases , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Exosomes/genetics , Exosomes/metabolism , Lung Diseases/genetics , Lung Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL